Contrasting photoprotective responses of forest trees revealed using PRI light responses sampled with airborne imaging spectrometry

The Photochemical Reflectance Index (PRI) provides an optical indicator of photosynthetic light-use efficiency, photoprotection, and stress in plants. Although PRI can be applied in remote sensing, its interpretation depends on irradiance, which is hard to obtain from satellite or airborne imagery.

To quantify forest photoprotective responses remotely, we developed a framework for modeling and interpreting PRI-light responses of individual trees and species using airborne imaging spectrometry coupled with georeferenced forest inventory data from a temperate broad-leaved forest. We derived an irradiance proxy, used hierarchical modeling to analyze PRI-light responses, and developed a framework of physiological interpretations of model parameters as facultative and constitutive components of photoprotection.

Photochemical Reflectance Index declined with illumination, and PRI-light relationships varied with landscape position and among tree crowns and species. More sun-exposed foliage had lower intercepts and slopes of the relationship, indicating greater constitutive, but less facultative, photoprotection.

We show that tree photoprotective strategies can be quantified at multiple scales using airborne hyperspectral data in structurally complex forests. Our findings and approach have important implications for the remote sensing of forest stress by offering a new way to assess functional diversity through dynamic differences in photoprotection and photosynthetic downregulation and providing previsual indicators of forest stress.

John A. Gamon, Ran Wang, Sabrina E. Russo
New Phytologist
Indian Cave