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Abstract 

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation 
policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass 
of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground 
biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide 
range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree 
height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model 
was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The 
mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood 
specific gravity was an important predictor of aboveground biomass, especially when including a much broader 
range of vegetation types than previous studies. The generic tree diameter–height relationship depended linearly on 
a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and 
drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropi-
cal model incorporating wood density, trunk diameter, and the variable E outperformed previously published 
models without height. However, to minimize bias, the development of locally derived diameter–height relationships 
is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass 
assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolution-
ary constraints on woody plant development. 
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accounted for 12–20% of global anthropogenic
Introduction 

greenhouse gas (GHG) emissions (Harris et al., 2012; le 
Over the past two decades, tropical land-use change, Quer� �e et al., 2012). Economic incentives to favor carbon 
especially deforestation and forest degradation, has sequestration in forests have been devised, commonly 

referred to as REDD (Reducing Emissions from 
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2008; Agrawal et al., 2011). Aside from the serious polit-
ical challenge in establishing a global mechanism to 
fund climate change mitigation activities (Fearnside, 
2012; Tirole, 2012; Tulyasuwan et al., 2012), its imple-

mentation critically depends on reliable ground-based 
monitoring, reporting, and verification (MRV) protocols 
of carbon storage. In the future, carbon MRV protocols 
will be increasingly based on remote-sensing tech-
niques, yet their calibration will still rely on the accu-
racy of ground-based carbon storage estimation (Asner 
et al., 2010; Saatchi et al., 2011; le Toan et al., 2011; Bac-
cini et al., 2012; Clark & Kellner, 2012). In tree-domi-

nated ecosystems, the stock of aboveground biomass 
(henceforth denoted AGB; in kg of oven-dry matter) 
held in vegetation is usually inferred from ground cen-
sus data. Tree biometric measurements are converted 
into biomass values using an empirical allometric 
model (Brown, 1997). However, the quality of these al-
lometric models represents one of the most important 
limitations in assessing AGB stocks (Chave et al., 2004; 
Skole et al., 2011; Clark & Kellner, 2012; Baccini & As-

ner, 2013). The goal of this contribution is to describe a 
new generation of pantropical tree allometric models 
and to evaluate the uncertainty associated to them. 
The development and testing of biomass allometric 

models depend on the availability of direct destructive 
harvest data, which are enormously time-consuming 
and expensive to acquire. Previously published studies 
have made progress toward addressing this problem. 
Brown (1997) proposed a scheme where different allo-
metric models should be used depending on vegetation 
type and on the availability of total tree height informa-

tion. As a compromise between environmental varia-
tion and data availability at the time, Brown (1997) 
proposed a classification of tropical forests into three 
forest types, dry, moist, and wet, following the Hold-

ridge life zone system (Holdridge, 1967; Brown & Lugo, 
1982). This seminal study was restricted to a few 
destructive harvest datasets. Chave et al. (2005) 
included many more datasets and a consistent statisti-
cal scheme of model selection. The Chave et al. (2005) 
models represented a major step forward in tropical 
forest carbon accounting, and they are currently being 
proposed for inclusion in the IPCC Emission Factor 
Database also used by REDD protocols. 
However, one major issue with the Chave et al. 

(2005) allometries relates to the importance of direct 
tree height measurements in AGB stock estimation. If 
total tree height is available, allometric models usually 
yield less biased estimates. However, tree height has 
often been ignored in carbon-accounting programs 
because measuring tree height accurately is difficult in 
closed-canopy forests (Hunter et al., 2013; Larjavaara & 
Muller-Landau, 2013). Whether or not to include tree 

height as a predictor of AGB has generated serious con-
troversies in the global change community (Baccini 
et al., 2012; Harris et al., 2012; Baccini & Asner, 2013). 
Better calibration and analysis of tropical tree allometric 
equations are needed to avoid mismatches of otherwise 
convergent studies, whether from plot inventory or 
plot-inventory-calibrated remote sensing. Second, the 
Chave et al. (2005) models may lead to biased AGB 
stock estimates in some undersampled vegetation 
types. Over the past few years, numerous new tree har-
vest datasets have been produced, notably in Africa 
(Djomo et al., 2010; Henry et al., 2010; Ebuy et al., 2011; 
Ryan et al., 2011; Fayolle et al., 2013; Mugasha et al., 
2013a), in dry forests and open woodlands (Nogueira 
et al., 2008a; Vieilledent et al., 2012; Colgan et al., 2013), 
and in previously undersampled regions in South 
America (Martinez-Yrizar et al., 1992; Alvarez et al., 
2012; Lima et al., 2012; Goodman et al., 2014). 
Here, we analyze a globally distributed database of 

direct-harvest tree experiments in tropical forests, sub-
tropical forests, and woodland savannas. Our dataset 
includes 53 undisturbed vegetation and five secondary 
forest sites spanning a wide range of vegetation types, 
for a total of 4004 trees with trunk diameter ranging 
from 5 to 212 cm. We address the following questions: 
(i) What is the best pantropical AGB model incorporat-
ing wood specific gravity, trunk diameter, and total 
height? (ii) How does our pantropical AGB model com-

pare in performance with locally fitted AGB models? 
(iii) If only diameter and wood specific gravity (and not 
total tree height) are available, does the inclusion of 
environmental variables improve AGB estimation? 

Materials and methods 

Site locations and climates 

The destructive harvest dataset assembled for the present 
study was distributed across the tropics and across vegetation 
types (Fig. 1). Local climatic information was extracted from 
global gridded climatologies, which interpolate data from 
available meteorological stations (New et al., 2002; Hijmans 
et al., 2005). Temperature and rainfall variables were acquired 
from the WorldClim database (Hijmans et al., 2005), which 
reports gridded mean climate values from the 1950–2000 per-
iod. We downloaded the dataset at 2.5 arc min resolution, or 
about 5 km spatial resolution along the equator (http://www. 
worldclim.org/current). This product includes elevation as 
available from a digital elevation model produced by NASA’s 
Shuttle Radar Topography Mission at ca. 90 m spatial resolu-
tion (Farr et al., 2007). Because water stress is important in pre-
dicting the shape of local allometric equations, we also 
extracted monthly values of reference evapotranspiration 
(ET), as computed by the FAO Penman–Monteith equation 
(Allen et al., 1998) at a 10 arc min resolution from a mean 
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Fig. 1 Geographical locations of the study sites. Yellow circles indicate 20 studies included in Chave et al. (2005); red circles indicate 38 
sites added to the present study. (Color in the online version) 

monthly climatology developed by the Climate Research 
Unit (New et al., 2002) over the 1960–1990 period (down-

loaded from http://www.fao.org/geonetwork/srv/en/ on 21 
November 2012). 

Preliminary analyses led us to focus on three bioclimatic 
variables: temperature seasonality, the maximum climatologi-

cal water deficit, and precipitation seasonality. Temperature 
seasonality (TS), is the standard deviation (SD) of the monthly 
mean temperature over a year, expressed in degrees Celsius 
multiplied by 100. Temperature seasonality increases pole-
wards from the equator, and also increases with altitude. The 
maximum climatological water deficit (CWD) is computed by 
summing the difference between monthly rainfall Pi and 
monthly evapotranspiration ETi only when this difference is P12negative (water deficit): CWD ¼ Minð0; Pi ETiÞ. Thisi¼1 

definition differs slightly from that of Arag~ao et al. (2007) and 
Malhi et al. (2009) because in this study, we assume that CWD 
is caused by a single drought season. Also, we used the Cli-
mate Research Unit dataset value for ET instead of assuming a 

1constant ET of 100 mm month , because ET shows strong 
patterns of geographical variation even in the tropics (Jung 
et al., 2010; Wang & Dickinson, 2012). A global gridded layer 
of CWD at 2.5 arc sec resolution is available at http://chave. 
ups-tlse.fr/pantropical_allometry.htm. Finally, precipitation 
seasonality (PS) is the coefficient of variation in monthly rain-
fall values, or the SD expressed in percent of the mean value. 

To explore whether the sites included in the database were 
representative of the environmental conditions of tropical 
woody vegetation, we compared them with sites selected at 
random. We defined as tropical woody vegetation sites 
between the two tropics with at least 50% of canopy cover in 
the FAO forest-cover map (included in the Food Insecurity, 
Poverty and Environment Global GIS Database, Huddleston 
et al., 2006). We randomly selected ca. 80 000 locations that fit 
the above criteria. For these locations, we extracted climate 
variables to define a realized range of climate values across 
tropical woody vegetation. We then graphically compared the 
distribution of environmental conditions at the study sites 
with the distribution observed over all selected sites. The 
result of this analysis is reported in Figure S1. 

Harvest dataset compilation 

We compiled tree harvest studies that had been carried out in 
old-growth or secondary woody vegetation, excluding 
plantations and agroforestry systems. The rationale for this 
choice is that the natural variability in plant allometry tends to 
be minimized in plantations. We considered only studies in 
which fieldwork was conducted by experienced ecologists or 
foresters. 

To be included in the compilation, the following measure-

ments had to be available for each tree: trunk diameter D 
3(cm), total tree height H (m), wood specific gravity q (g cm ), 

and total oven-dry AGB (kg). We excluded trees with 
D < 5 cm because such trees hold a small fraction of AGB in 
forests and woodlands (Chidumayo, 2002; fig. 3), and would 
otherwise dominate the signal in regression models. The com-

mon practice for measuring D is to measure trunk diameter at 
130 cm aboveground (diameter at breast height). Buttressed 
or irregular-shaped trees are measured above buttresses or 
trunk deformities. It was impossible to confirm that this con-
vention had been followed, especially for the older datasets 
(e.g. Hozumi et al., 1969), but the trunk diameter size structure 
was carefully checked and the retained datasets were those 
without obvious diameter measurement error. Measuring total 
height accurately may also be an issue in closed-canopy for-
ests (Hunter et al., 2013; Larjavaara & Muller-Landau, 2013). 
The compiled studies usually did not report how tree height 
was measured. However, it is likely that more effort was put 
into measuring tree height correctly in destructive harvest 
experiments than in nondestructive forest surveys. 

Each tree was felled at ground level, and different sections 
were weighed fresh or their fresh volume measured. The fresh 
wood weight was then converted into oven-dry weight by 
directly measuring the moisture content in the different parts of 
the plant. In the largest trees, it was usually not practical to 
weigh the entire individual, so wood volume was often inferred 
from geometrical considerations (see e.g. Henry et al., 2010; 
Fayolle et al., 2013), and wood volume was converted into 
oven-dry weight by multiplying the volume by the wood spe-
cific gravity (Chave et al., 2009; Williamson & Wiemann, 2010). 
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In many studies, the mass of the main stem (merchantable bole 
before the first branching), branches, and leaves were measured 
separately. In seasonally dry forests, it was often difficult to 
measure leaf biomass because of deciduousness, but leaf bio-
mass usually contributes less than 5% of total AGB (Delitti 
et al., 2006). Thus, we analyze only total oven-dry above ground 
biomass (the sum of the above ground biomass compartments). 

Our dataset includes 58 study sites, from published and 
unpublished sources, for a total of 4004 individually harvested 
trees (see Data S2). The previous compilation, reported in 
Chave et al. (2005), included 20 study sites and 1481 individu-
ally harvested trees for which trunk diameter, total tree height, 
AGB, and wood specific gravity were all available. A few 
studies were removed from the Chave et al. (2005) compilation 
because the criteria for inclusion chosen here were more strin-
gent (see Data S3). Sites included in this database comprise 
the first destructive harvest experiments reported from the 
Afro-tropical realm (n = 1429, including Madagascar), data 
from Latin America (n = 1794), and from Southeast Asia and 
Australia (n = 781). This also includes many new sites from 
woodlands and dry tropical forest types, both in Africa and 
Latin America. This compilation was carried out between 2008 
and 2013. In a recent article, Feldpausch et al. (2012) published 
a reanalysis of the Chave et al. (2005) dataset, to which they 
added six datasets (349 trees). Of these additional datasets, we 
retained five in the present compilation. Because we also 
removed and corrected some data from Chave et al. (2005), the 
dataset analyzed here is more conservative than that of Feldp-
ausch et al. (2012), but is also more than twice as large. 

Wood specific gravity (here defined as the oven-dry wood 
mass divided by its green volume, and denoted q) is an  
important predictor of stand-level AGB (Baker et al., 2004). In 
the field, green volume was measured from freshly cut wood 
samples. The samples were subsequently weighed after hav-
ing been left in a drying oven until constant weight is reached. 
However, it should be acknowledged that even direct q mea-

surement is prone to error (for a comprehensive review, see 
Williamson & Wiemann, 2010), and not all individuals had q 
directly measured in the field. The alternative is to assume 
that the q of a tree is equal to its species-mean value. The 
majority of the trees in our dataset were identified to species 
(81%). Taxonomic information was carefully checked for con-
sistency (Boyle et al., 2013). In case of inconsistencies, the most 
likely name was selected. In a few cases, trees were identified 
using a vernacular name, and we attempted to assign them to 
the most precise relevant taxonomic level, often to genus, 
based on expert knowledge. For those trees lacking direct q 
measurement but identified taxonomically, we extracted the 
species-mean from the comprehensive global wood density 
database (Chave et al., 2009; Zanne et al., 2009). In that data-
base, wood specific gravity values are typically means across 
several individuals of the same species, and measurements 
were conducted in highly qualified wood science laboratories. 
In total, q was directly measured for 59% of the trees, and spe-
cies-mean q was assumed for an additional 26% of the trees. 
For the remaining 15% of the trees, we assumed genus-mean 
(13%) or family mean (2%) wood specific gravity values as 
computed from the global database. 

To test a possible bias in the selection of q from global com-

pilations, we compared the values obtained directly from field 
values and from the global database for a total of 1194 trees. 
Because the errors are expected to be of the same magnitude 
in both variables, we used a reduced major axis regression 
and found that database values explained 67% of the variance 
in the field values, and the slope of the regression was of 
0.993, very close to the expected slope of 1. Thus, we conclude 
that assigning species-mean wood specific gravity values to 
the trees of our database may introduce random errors but 
did not bias the analyses. 

The tree harvest database used in the present study is avail-
able at http://chave.ups-tlse.fr/pantropical_allometry.htm. 

Statistical analyses 

Estimating AGB when tree height is available. Allometric 
model construction is based on regressing a dependent vari-
able (i.e. AGB), against one or several independent variables. 
The possible independent variables included here were trunk 

3diameter D (cm), wood specific gravity q (g cm ), total tree 
height H (m), or a combination thereof. We fitted the following 
log-log model relating AGB to the compound variable 
q 9 D2 9 H. 

ln (AGB) ¼ a þ b lnðq D2 HÞ þ e ð1Þ 

where a and b are model coefficients (derived from least-
squares regression), e is an error term, which we assume to be 
normally distributed with zero mean and SD r [i.e. the ran-
dom variables are identically independently distributed with 

2a distribution N (0, r )]. If a model such as Model 1 has p 
parameters, r is defined by vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u 

N u X1 t 2r ¼ eiN p 
i¼1 

where N is the sample size. In the statistical literature, r is also 
called residual standard error or RSE. Technically, the above 
formula is the residual maximum likelihood estimate for r, 
and it may be shown to be unbiased (Harville, 1977). If b = 1, 
an isometric relationship exists between AGB and qD2H. In  a  
likelihood-based framework, testing the hypothesis that b = 1 
may be implemented by comparing the Akaike Information 
Criterion (AIC) of Model 1 with the nested model ln 
(AGB) = a + ln (q 9D2 9H) + e. The AIC is a measure of the 
goodness-of-fit that penalizes parameter-rich models, as 
required by the principle of parsimony (Burnham & Ander-

son, 2002). 
Model 1 may be used to infer the value of AGB for an indi-

vidually measured tree. The estimated value AGBest can be 
written as: 

AGBest ¼ exp½a þ b lnðqD2HÞ þ e 
¼ exp½e exp½a þ b lnðqD2HÞ� R 

where exp½e �¼ expðeÞNðeÞde and N(e) is the distribution of 
2errors [assumed to be a normal distribution, N(0, r )]. As first 

shown by Baskerville (1972), a simple algebraic manipulation 
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2yields exp½e �¼ expðr =2Þ. From this it follows that Model 1 
may be used to give an unbiased estimate of AGB using the 
following equation: 

2AGBest ¼ exp½r =2 þ a þ b lnðqD2HÞ� ð2Þ 
Improvements to this formula are possible, especially 

accounting for the fact that the estimator of r itself has uncer-
tainty (Shen & Zhu, 2008). Recently, Clifford et al. (2013) have 
reviewed this issue and provided routines to implement cor-
rections. We also tested this approach using our dataset. How-

ever, as our sample size is large, we found that applying the 
correction of Shen & Zhu (2008) to our data yielded AGB esti-
mates within 0.5% of the values obtained with the Baskerville 
correction [Eqn (2)]. We therefore decided to retain the sim-

pler [Eqn (2)] for the present study. 
While the importance of trunk diameter in inferring AGB 

has been acknowledged since the development of tropical for-
estry (Dawkins, 1961; Ogawa et al., 1965), the importance of q 
as a predictor of AGB has been debated only recently. Wood 
specific gravity varies greatly within individuals (Pati~no et al., 2009) 
and existing pantropical wood specific gravity compilations are 
incomplete (Clark & Kellner, 2012). Therefore, it has been argued 
that q may not be a useful variable in AGB estimation (Lima et al., 
2012). To test this hypothesis, we conducted a comparison of Model 
1 with a similar model, but from which wood specific gravity was 
excluded, namely ln(AGB) = a + b ln(D2 9 H) + e. We asked  
whether this alternative model yields a goodness-of-fit comparable 
to that of Model 1, as evaluated by AIC. 

For each of the 58 sites, we calculated measures of average 
systematic error (bias) and of total tree-level coefficient of vari-
ation (CV). As in Chave et al. (2005), the bias at individual 
sites was evaluated by comparing the empirical mean AGB at 
site j Bobs (j) to the estimated value Best (j). The model bias was 
defined as follows: 

BiasðjÞ ¼ ½BestðjÞ� BobsðjÞ�=BobsðjÞ 
To measure total error, including random error, we also 

computed the tree-level coefficient of variation in AGB for site 
j defined as sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi X1 

RSEðjÞ ¼  ½AGBestði; jÞ� AGBobsði; jÞ�2 

pNj i2½j 

X1 
MAGBðjÞ ¼  AGBobsði; jÞ;

Nj i2½j 

RSEðjÞ 
CVðjÞ ¼  

MAGBðjÞ 
as in Colgan et al. (2013). AGBobs (i, j) is the observed AGB of 
tree i belonging to site j, and AGBest (i, j) is the estimated AGB 
value for the same tree. The first equation defines the residual 
standard error (RSE), the second defines the mean AGB at site 
j MAGB(j). Then, CV(j) is simply defined as the ratio of these 
two terms. CV(j) measures the typical relative error at site j 
that should be expected in the estimate of a single tree. A large 
value of CV(j) would be acceptable so long as the bias is low, 
because in general the model is applied to many trees within a 
site and thus random errors will tend to cancel. 

The tree-level coefficient of variation (CV) and the bias 
were used to compare the performance of the model sum-

marized in Model 1 with that of alternative models. We 
performed the analysis in three stages. First, at each study 
site we fitted Model 1 using all study sites except that of 
the focal site. We then computed the CV and the bias of 
the focal site with this model, ensuring that the calibration 
and validation datasets are independent. Second, we tested 
the hypothesis that local models perform significantly better 
than pantropical models. To this end, we constructed a local 
allometry excluding all study sites but the focal one, again 
using Model 1. We then computed the CV(j) and Bias(j) of  
the focal site based on the local model. We expect that the 
local models will have lower bias and variance (hence 
smaller CVs). However for local models (but not for the 
pantropical model), the same dataset is used to calibrate the 
model and to compute errors (validation stage). Thirdly, we 
repeated the same procedure as in stage 1, but using the 
predictor variable D2 9 H instead of q 9 D2 9 H to test the 
hypothesis that wood density is an important predictor of 
AGB. We again compared the performance of the two mod-

els based on the CV and bias at each study site. 

Estimating AGB when tree height is unavailable. When 
tree height is unavailable to estimate AGB, the inference is 
thought to be less accurate, and allometric equations are more 
likely to vary across vegetation types, as diameter–height 
allometry depends on environmental conditions. Pantropical 
or regional allometric equations to predict AGB based on 
only D and q have been developed previously (Brown, 1997; 
Ketterings et al., 2001; Chave et al., 2005; Feldpausch et al., 
2012), but here we provide a simpler framework. We seek a 
general model relating total tree height to trunk diameter and 
bioclimatic variables. We selected the relevant bioclimatic 
variables using a forward model selection approach where all 
possible combinations of bioclimatic variables were compared. 
If such a model does exist, then it should be possible to infer 
height from trunk diameter at each site. Here, we propose the 
following functional form: 

0 2 0lnðHÞ ¼ a þ a E þ b lnðDÞ þ c lnðDÞ þ e ð3Þ 

The quadratic dependence of ln(H) on ln(D) was implicitly 
assumed in previous studies (Chambers et al., 2001; Chave 
et al., 2005), but to our knowledge it has never been tested 
directly as a diameter–height equation. In Eqn (3), E denotes 
an environmental variable, and model error is described by 
the SD of the residuals denoted r’ to avoid confusion with the 
r of Model 1. More general models may be constructed 
similarly, assuming that all of the model parameters depend 
on E, but we here privileged the simplicity and consistency of 
the present approach. To select the environmental variable E, 
we performed a forward selection by sequentially including 
the bioclimatic variables that led to the greatest decline in 
model RSE. 

Once total tree height has been estimated from Eqn (3), 
Eqn (1) can be used to estimate AGB even for trees without 
field measurements of H. Further, the mathematical form of 

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3177–3190 
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the resulting AGB model is equivalent to that proposed in 
Chambers et al. (2001) and used by Chave et al. (2005). More 
precisely, using Eqn (3) to express ln(H) as a function of ln(D) 
and using this estimate in Eqn (1), yields a new pantropical 
allometric model 

2 02r
AGBest ¼ exp þ b2 r þ a þ b lnðqD2Þ þ  bflnðHÞg

2 2 est 

0whereflnðHÞg ¼ a þ a E þ b lnðDÞ þ  c lnðDÞ2 is obtained est 

directly from Eqn (3), and depends explicitly on the local bioclimatic 
variable E. We also compared the  performance of Eqn  (3)  with the  
height equations proposed by Feldpausch et al. (2012). 

Because of the quadratic form of Eqn (3), it would be theo-
retically possible that for large values of D, H would decrease 
when D increases. We therefore tested whether this regime 
was likely to be reached empirically. The function reaches a 
maximum at D = exp [ b/(2c)], and we verified that this 
maximum is never reached in practical applications. 

All statistical analyses were performed with the R statistical 
software (R Development Core Team, version 3.0.3). 

Results 

When we regressed tree AGB (kg) against the product 
q 9 D2 9 H, we found the best-fit pantropical model 
to be: 

�ð qD2HÞ0:976AGBest ¼ 0:0673 

ðr ¼ 0:357; AIC ¼ 3130; df ¼ 4002Þ ð4Þ 
3where D is in cm, H is in m, and q is in g cm . This 

model performed well across forest types and biocli-
matic conditions (Figures S2 and S3). The alternative 
model where the exponent was constrained to one: 

AGBest ¼ 0:0559 �ð qD2HÞ 
ðr ¼ 0:361; AIC ¼ 3211; df ¼ 4003Þ ð5Þ 

gave a slightly poorer performance (greater r and AIC). 
Model 4 tends to underestimate AGB by 20% for indi-
vidual trees with observed AGB exceeding 30 Mg 
(n = 14; Fig. 2). The trend disappeared for trees in the 
range 10–30 Mg (2.7% overestimation, n = 94). Because 
of the spread of values for qD2H, we did not find 
suitable models to accommodate this bias. 
In comparison to Model 4, the best-fit model excluding 

wood specific gravity as a predictor had an AIC = 3983 
and r = 0.418, which are significantly poorer than Model 
4. Thus, we conclude that wood specific gravity is an 
important predictor of AGB, especially when a broad 
range of vegetation types is considered. 
Compared with local models, average total tree-level 

prediction error was only modestly higher in the pan-
tropical model (Fig. 3a), but the spread of systematic 
error across sites was more than three times higher 

(a) 

(b) 

Fig. 2 Goodness-of-fit for Model 4. (a) AGB as estimated from 
the model vs. observed AGB (n = 4004, gray points), compared 
with the 1 : 1 line (dashed line). (b) Relative error (estimated 
minus observed AGB, divided by observed AGB, in%); the thick 
black line represents a spline regression of the data points, illus-
trating a slight negative bias at large AGB values (values >30 
Mg). The background represents data-point density. 

(Fig. 3b). The mean of CV(j) across sites was 56.5% 
using the pantropical allometric Model 4 vs. 47.4% 
using the local allometric models. The mean bias was 
+5.31% across all sites for Model 4, vs. +0.38% for the 
locally developed models. The pantropical model 
tended to substantially overestimate the measured 
total, site-level AGB at seven sites (bias > 30%) and 
underestimate it (bias< 30%) at one site (Fig. 3b). This 
bias was not explained by vegetation type or by biocli-
matic conditions (Figures S2 and S3). The site-mean 
form factor (AGB divided by q 9 D2 9 H) displayed a 
trend with forest type and bioclimatic factors, but this 
trend was significant only with CWD (climatic water 
deficit, R2 = 0.17, P = 0.02, Figure S4). 
To compare more directly the influence of vegetation 

type and site on Model 4, we also conducted a nested 

analysis of variance on the relative residuals 

AGBest AGBobs100 . The vegetation type factor
AGBobs 

explained 0.6% of the relative residual variance, the site 
factor explained 21.4%, and the within site variation 
explained 78%. Thus, most of the residual variation in 
the dataset was among trees within sites. Model 4 was 
plotted for each site in Data S2. 
For cases in which total tree height is unavailable, we 

developed a diameter–height allometric equation of the 
form of Eqn (3). Using forward selection (see Methods), 
we found that among-site variation in diameter–height 

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3177–3190 
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(a) (b) 

Fig. 3 Comparison of model performance between the pantropical allometric AGB Model 4 and local allometric models. (a) Individual 
coefficient of variation at each site for both types of allometries. Point size is proportional to sample size, red dots indicate Latin American 
sites, green African sites, and blue Southeast Asian and Australian sites. Outlying sites are labeled (sites such that CV >100% in any one 
direction). (b) Individual bias at each site for both types of allometries. Point color as in Panel (a), point size proportional to total AGB at 
the site. In color in the online version. Outlying sites – sites such that the absolute value of the bias exceeds 30% – have been labeled. 
(Color in the online version) 

allometries was best explained by TS (temperature 
seasonality), CWD (climatic water deficit), and PS (pre-
cipitation seasonality), with only small further declines 
in model RSE with the sequential inclusion of addi-
tional bioclimatic variables (Figure S5). We thus pro-
pose the following pantropical diameter–height 
allometric model 

lnðHÞ ¼ 0:893 E þ 0:760 lnðDÞ� 0:0340½lnðDÞ�2 ð6aÞ 
(AIC = 47, RSE = 0.243, df = 3998), where E is defined 
as 

E ¼ ð0:178 TS 0:938 CWD 6:61 PSÞ� 10 3 

ð6bÞ 
Equation (6b) has an intuitive interpretation. E is a 

measure of environmental stress. Indeed, E increases 
with temperature seasonality, which relates to the 
amount of time a plant is exposed to stressful tempera-

ture, and CWD (a negative quantity) increases in magni-

tude with increasing annualized water stress. The 
dependence of E on PS (precipitation seasonality) is less 
obvious but appears to be mostly driven by monsoon-

dominated rainfall regime (Nemani et al., 2003). The 
dependence of diameter–height allometry on E is illus-
trated in Fig. 4. A global gridded layer of E at 2.5 arc sec 
resolution is available at http://chave.ups-tlse.fr/pan-
tropical_allometry.htm. Equation (6a) predicts that the 
log-transform of tree height for a given diameter 
declines with both water and temperature stress. We 
also verified that the functional form of Eqn (3) is biolog-
ically consistent: for all E, the quadratic function in ln(D) 
reaches a maximum that far exceeds biologically realistic 
values for D. Combining Eqns (4) and (6a) directly, AGB 
can be inferred in the absence of height measurements 

(RSE = 0.431, df = 3999). Here, we prefer to fit the data 
directly, yielding the following model: 

AGBest ¼ exp½� 1:803 0:976E þ 0:976 lnðqÞ 
þ 2:673 lnðDÞ� 0:0299½lnðDÞ�2 �ð 7Þ 

which yields a slightly lower RSE (AIC = 4293, 
r = 0.413, df = 3999). The mean CV across sites and the 
bias were 71.5% and 9.71%, respectively. We therefore 
propose Model 7 for estimating AGB in the absence of 
height measurements. The performance of Model 7 was 
clearly worse than Model 4, as observed from a com-

parison of the AIC, and as would be expected (Model 7 
vs. Model 4; CV: 71.5% vs. 56.5%; bias: 9.71% vs. 5.31%; 

Fig. 4 Dependence of the diameter–height model on the envi-
ronmental variable [E; Eqn (6b)]. Point color and size are as in 
Fig. 3. (Color in the online version) 
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Fig. 5a, b). We also verified that if the regional diame-

ter–height models of Feldpausch et al. (2012) had been 
used instead of Model 6a, the bias would have been 
much larger (mean bias: +22.41%; Figure S6). 
Finally, we compared the performance of the models 

proposed in this study with that developed in Chave 
et al. (2005). Model 4 predicted results very similar to 
those obtained with Model I.3 of Chave et al. (2005). 
Across our sites, the mean CV(j) of Model I.3 was 
56.2%, and the mean bias was 2.24%, and these values 
were similar to that obtained for Model 4. When tree 
height is unavailable, Chave et al. (2005) proposed 
model II.3. The mean CV(j) of Model II.2 was 80.5%, 
and the mean bias was +5.78%. Although it is simpler, 
our new Model 7 thus performed much better than the 
Chave et al. (2005) models. 

Discussion 

On estimating AGB when tree height is available 

We here propose a single allometric equation to esti-
mate tree AGB across vegetation types when wood 
specific gravity, trunk diameter, and total tree height 
are available (Model 4). Most of the variation was 
found within vegetation types, and the apparent varia-
tion among vegetation types appears to mostly reflect 
small sample sizes. This interpretation is supported by 
the fact that the form factor (ratio of AGB divided by 
qD2H) varies weakly across vegetation types (Figure 
S4). This convergence of tropical tree biomass allome-

tries across biomes and continents is striking. The 
causes of variation in trunk tapering coefficient have 
been studied in depth (Dawkins, 1961; Niklas, 1994; 
Chave et al., 2005), but the form factor depends also on 
the size and shape of the crown. One possible interpre-

(a) 

tation of our finding is that although trunk taper varies 
consistently across vegetation types, biomechanical 
design both of the hydraulic plant system and of the 
organism strongly constrains the overall architecture of 
self-supporting plants. 
It is useful to contrast this result with the previous 

analysis of Chave et al. (2005). Here, we greatly 
increased the sampling effort in both dry and wet vege-
tation types. In the 2005 analysis, only three dry forest 
sites where tree height was measured were included to 
form the basis of the dry forest equation (Australia: 46 
trees, Yucatan: 175 trees, IndiaCha: 23 trees). In compar-

ison, the present study includes 22 dry vegetation sites, 
and 1891 trees. Likewise, Chave et al. (2005) included 
only three wet forest sites having height data (NewGui-

nea: 42 trees, PuertoRi: 30 trees, Cambodia: 72 trees), 
while the present analysis now includes 12 wet forest 
sites and 681 trees. 
Although our dataset represents a significant 

improvement over previously published intercompari-

sons of tree harvest data, they are still limited in size, 
especially compared with those developed for temper-

ate forests (Chojnacky et al., 2014) or plantations (Paul 
et al., 2013). One option for assembling whole-tree AGB 
measurements without harvesting the tree is to use ter-
restrial LiDAR to estimate the volume of individual 
branches and stems (Hildebrandt & Iost, 2012). With 
additional wood specific gravity measurements, it 
should be possible to estimate tree AGB to a good accu-
racy without felling the tree. This approach should 
accelerate the acquisition of tree biometric data. 
Based on the data now available, it appears that sepa-

rate regression parameters for the dry, moist, and wet 
vegetation types do not improve the statistical perfor-
mance of the model. Our analysis thus suggests that it 
is more parsimonious to retain a single allometric 

(b) 

Fig. 5 Comparison between the pantropical allometric AGB Model 7 and pantropical allometric AGB Model 4. Panel (a) Individual 
coefficient of variation at each site for both types of allometries. Outlying sites are labeled (sites with an individual CV >150%). Panel 
(b) Comparison of the bias between Model 7 and Model 4. Point color and size are as in Fig. 3. Outlying sites are labeled (sites with an 
absolute bias >50%). (Color in the online version) 
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model. Previously published estimates for moist forests 
using Chave et al. (2005)’s Model I.3 are very close to 
estimates obtained using Model 4, as may be evidenced 
in Table 1. This is important because most of the tropi-
cal forest carbon sequestration occurs in moist tropical 
forests and the corresponding Chave et al. (2005) allom-

etry has been used frequently in the published litera-
ture (see e.g. Asner et al., 2010 and the related 
discussion in Skole et al., 2011). Thus, it is likely that 
the present equation will not drastically change AGB 
stock estimates for moist tropical forests. We also note 
that this new model holds for both old-growth and sec-
ondary vegetation types. 
The previous classification of harvest experiments 

into forest types was based on the sparse bioclimatic 
information available at the time, and possible inconsis-
tency in climatic measurements, which led to a misclas-

sification of some of the sites. For instance, the 
Cambodia dataset is a forest close to the current locality 
of Thma Sa in the Kingdom of Cambodia. It was previ-
ously classified as ever-wet forest because annual rain-

1fall exceeds 3300 mm yr . However, it is a monsoonal 
climatic regime (ET exceeds rainfall during 6 months of 

1the year and CWD is less than 400 mm yr ); thus, 
this site was now reclassified as dry forest for compari-

son with previous studies. This illustrates the impor-

tance of accurate estimates of bioclimatic variables, and 
of relying on quantitative climatic metrics, rather than 
on an a priori classification into vegetation types. 
Because global climatic compilations have greatly 
improved over the past decade (Hijmans et al., 2005), it 
is now possible to obtain far better bioclimatic descrip-
tors at ecological study sites than the ones derived from 
the Holdridge life zone system. 
In a recent study, Goodman et al. (2014) emphasized 

that pantropical allometric models may underestimate 
the AGB of very large trees in areas where trees are 

shorter but have large crowns. We did detect a 
departure between observations and predictions for 
individual trees with an AGB greater than 30 Mg. For 
these very large trees, Model 4 underestimated AGB by 
an average of 20% (note that this bias vanishes for trees 
in the range 10–30 Mg). This is an issue given that these 
large trees may contribute a large fraction of the AGB 
stock in a tropical forest stand. However, we here sug-
gest that sampling bias in the harvest dataset may also 
in part explain this pattern. Because harvesting very 
large trees is a laborious endeavor, we hypothesize that 
well-formed boles may have been preferentially 
selected over partly broken, or senescent large trees, 
especially when the study was conducted in relation to 
logging activity (as is the case for the Cameroon3 site, 
which includes eight of the 14 trees with AGB ≥ 30 Mg 
in our dataset). We therefore believe that the discrep-
ancy of our model in these extreme values of AGB 
should not necessarily be interpreted as a failure of the 
model. In a recent essay, Clark & Kellner (2012) pro-
vided a constructive critique of current strategies for 
AGB model development, and they suggest that har-
vested trees are probably never selected at random, 
and that poorly conformed trees are seldom included 
in analyses. Models with few parameters are robust to 
biases generated by individual harvest datasets, and 
they are therefore an advantage in this situation. 
It has often been argued that local allometric equa-

tions should be constructed in as many sites and for as 
many species as possible. In the same line of reasoning, 
many authors have contended that previous pantropi-
cal AGB allometries could not be used in Africa 
because no African site had been included in previous 
efforts for constructing pantropical AGB models 
(Chave et al., 2005). However, our results show that 
once variation in diameter–height allometries are 
accounted for, pantropical AGB allometries are 

Table 1 Estimation of the AGB (kg) when tree height is available, for trees of typical dimensions and for the four largest trees in 
the dataset. Four models are used: the three models called Model I.3 in table 2 of Chave et al. (2005), and Model 4 of the present 
study. The last four lines represent the parameters of trees in the dataset reported to have measured AGB over 50 Mg. Their mea-

sured AGBs are 51.7 Mg (Cyclodiscus gabunensis (Taub.) Harms), 60.5 Mg (Entandrophragma cylindricum (Sprague) Sprague), 70.2 Mg 
(Tieghemella heckelii (A.Chev), Pierre, ex Dubard), and 76.1 Mg (Dipteryx micrantha Harms), respectively 

Trunk Height Wood specific Model I.3 Model I.3 Model I.3 This study 
diameter (cm) (m) gravity (g cm 3) dry forests moist forests wet forests model 4 

10 9 0.7 41 32 33 36 
30 25 0.6 680 687 592 723 
70 40 0.6 4940 5986 4529 5980 

100 45 0.5 8950 11 453 8335 11 265 
136 48.5 0.78 25 302 35 615 24 215 34 092 
178 52.4 0.57 33 364 48 169 32 162 45 776 
180 61 0.62 42 274 62 371 41 005 58 906 
158 44.1 0.83 32 310 46 510 31 120 44 237 
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consistent across sites. To quantify this claim, we com-

pared error metrics between our pantropical equation 
and locally fitted equations. The pantropical approach 
was based on the estimation of two parameters (Model 
4), while the local approach required the estimation of 
two parameters per site, i.e. 116 parameters in total. We 
found that the AGB of single trees was estimated to 
within 56.5% of the mean using the pantropical model 
and to within 47.4% of the mean with local allometric 
models (coefficient of variation; Fig. 3a). Thus, local al-
lometric models do not perform much better than pan-
tropical models in terms of model uncertainty: in both 
cases, the error in estimation of AGB for any single tree 
is on the order of 50% of the mean. Mean bias across 
sites was higher for the pantropical equation, averaging 
+5.31% vs. +0.38%. However, this is in part a simple 
consequence of the fact that, in the local case, fitting 
and evaluation are performed on exactly the same data-
set. Indeed, if we measured bias as mean deviations in 
ln(AGB), then we would have zero bias for the local 
models by the very nature of the model fitting proce-
dure, which minimizes the sum of squared errors in ln 
(AGB). Because we measure bias instead as the mean 
error in AGB, the local models have nonzero bias, but 
this bias is still inherently small. 
Much of the increase in bias between the local and 

the pantropical allometries was contributed by six out-
lying sites (three moist forests and three wet forests; 
Fig. 3b). For these outlying sites, Model 4 tends to over-
estimate AGB. A number of interpretations could be 
put forward to explain this discrepancy. The dimen-

sions of wet forest trees are difficult to measure because 
many trees are buttressed. Yet the majority of wet forest 
sites comply with the pantropical model (eight of 11). 
Also, methodological inconsistencies with the other 
studies included in the present compilation cannot be 
excluded. However, as several of these studies were 
conducted decades ago (NewGuinea, Venezuela2, Jali-
sco), it would be difficult to trace back such inconsisten-
cies, if any. Thus, it is important to continue generating 
primary data with careful quality control/quality 
assurance procedures. 
Tree-level uncertainty in AGB estimation from our 

model is about of 50% the mean, thus individual-
tree AGB cannot be estimated precisely with any 
such model. However, assuming an average of 500 
trees with D ≥ 10 cm per ha, then the plot-based 
uncertainty in AGB can be computed as follows. If, 
as previously, we denote AGBest(i) the esti-

mated value of AGB for tree i, and the SD for this 
tree r(i), then r (i) = CV 9 AGBest(i), and CV = 50%. 
A simple calculation shows that plot-based uncer-
tainty, CVplot is such that 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Ri½AGBestðiÞ� 2 

CVplot ¼ CV ð8Þ 
RiAGBestðiÞ 

where the sum runs over all the trees in the plot. Com-

puting this for typical AGB distributions shows that 
plot-level uncertainty due to the allometric equation 
drops to ca. 10–15% for a ¼ ha plot and ca. 5–10% for a 
1 ha plot. This plot-based uncertainty is larger than 
expected from a simple averaging because a few large 
trees contribute disproportionately to stand-level AGB 
(Chave et al., 2004). However, even accounting for these 
terms, model-based uncertainty is typically less than 
10% of the mean at the 1 ha scale, and the equation for 
CVplot allows to compute this uncertainty for any plot. 

On inferring tree height from trunk diameter and 
bioclimatic variables 

A large body of literature in forestry suggests that 
the diameter–height relations in trees depend on a 
range of physiological and environmental factors 
(Ryan & Yoder, 1997; Falster & Westoby, 2005; Ryan 
et al., 2006; Niklas, 2007; Kempes et al., 2011; Muga-

sha et al., 2013a,b). These include climatic conditions 
(Wang et al., 2006; Nogueira et al., 2008b; Lines et al., 
2012) and altitude (Grubb, 1977; Aiba & Kitayama, 
1999; Lines et al., 2012; Marshall et al., 2012), but also 
local edaphic factors (Aiba & Kitayama, 1999; Kem-

pes et al., 2011), evolutionary and architectural con-
straints (King, 1990; Niklas, 1994; Falster & Westoby, 
2005; Goodman et al., 2014), and competition for 
space (Henry & Aarssen, 1999). For instance, Lines 
et al. (2012) showed that in temperature- and/or 
water-stressed environments, tree height is typically 
much smaller than expected under a purely mechani-

cal model, confirming the primary role of hydraulics 
in regulating the height of trees at a given trunk 
diameter (see also Kempes et al., 2011). 
Recently, Feldpausch et al. (2011) conducted a pan-

tropical analysis of diameter–height tree allometries 
and concluded that regional variation in this allometry 
was an important source of variation in tree AGB. They 
then developed a set of region-specific diameter–height 
allometries to minimize bias due to the variation in can-
opy height across tropical forest regions (see also Banin 
et al., 2012). They investigated whether some of the cli-
matic variables in the WorldClim database may predict 
a significant fraction of the variation in the diameter– 
height relationship. For a given trunk diameter, they 
found a positive correlation between tree height and 
precipitation seasonality only. Their finding is counter-
intuitive because height should peak at intermediate 
precipitation seasonality values, and be lower in both 

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3177–3190 
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dry and ever-wet forests (see e.g. Hall & Swaine, 1981; 
figure 5.1; Wang et al., 2006). This is probably because 
the Feldpausch et al. (2011) database did not include 
many dry vegetation sites. 
Here, we readdressed the question of the bioclimatic 

dependency of the diameter–height relationship in 
tropical trees. Our dataset had only a limited overlap 
with that used in Feldpausch et al. (2011) and Banin 
et al. (2012), and we found different results. Our major 
finding is that the diameter–height relationship 
depends linearly on a compound bioclimatic variable E, 
which itself is a linear function of climatic water deficit, 
temperature seasonality, and precipitation seasonality. 
Indeed, we found that a large fraction of the residual 
variation in the diameter–height relationship is attribut-
able to the variable E, and that a single model (Eqn 6) 
may be used to predict total tree height from trunk 
diameter and E across the tropics. 
Our finding that the tree diameter–height relationship 

reflects the effect of drought tolerance and tolerance to 
temperature variability is consistent with a number of 
classic results in plant physiology. For instance, drought 
and temperature are known to modulate tree physiol-
ogy and especially carbon assimilation (reviewed in 
Lloyd & Farquhar, 2008) but also ecosystem productiv-
ity (Nemani et al., 2003; Gatti et al., 2014). Also, our find-
ings confirm those of Aiba & Kitayama (1999), Lines 
et al. (2012), and Kempes et al. (2011), but over a much 
larger geographical and environmental scale. 

Carbon accounting and relevance to global change 

The finding that AGB may be reliably inferred from 
wood specific gravity, trunk diameter, and the environ-
mental variable E, has obvious consequences for Mea-

surement, Reporting, and Verification (MRV) 
applications and carbon accounting activities. Indeed, 
many countries are currently implementing forest 
inventories where total tree height is not directly mea-

sured, because of logistical and financial consideration. 
Our Model 7 shows that information on wood specific 
gravity (as inferred from the taxonomic determination 
of the tree), trunk diameter, and the variable E (as 
inferred from the geolocation of the plot) is sufficient to 
provide a robust AGB estimate of this tree. We assessed 
the performance of Model 7 compared with our best 
Model 4 and found that it gave reliable results at most 
sites. We also quantified the performance in terms of 
the model’s RSE, and this performance can be used in 
future error propagation studies (Eqn (8)). We conclude 
that the present strategy for AGB estimation is more 
robust than Model II.3 of Chave et al. (2005), and that it 
outperforms the strategy proposed by Feldpausch et al. 
(2012), as evidenced in Figure S6. 
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However, it cannot be overstated that this method 
provides estimates – not direct measurements – and 
model error should always be carefully examined and 
propagated through to the quantity of interest. 
Although Model 7 is an improvement over previously 
published generic biomass allometries, it is likely to 
provide unreliable results in some situations. For 
instance, some low-stature vegetation types in the tro-
pics are driven not by the climate but by soil type 
(heath forests). Because these vegetation types may 
occur in limited areas, the diameter–height allometry 
may vary significantly at the landscape scale. Thus, we 
advise, whenever possible, developing a local diame-

ter–height allometry, by measuring total height on a 
subsample of the trees stratified by trunk diameter and 
by forest type. In such projects, the accuracy of total 
tree height measurement is critical. We strongly advise 
using direct measurements of tree height. The most reli-
able method for large trees is to climb the tree and mea-

sure the distance from the top branch to the ground 
using a laser rangefinder with decimetric accuracy 
(such as the Laserace 1000, Trimble Navigation Lim-

ited, Sunnyvale, CA, USA, or the TruePulse Series, 
Laser Technology, Centennial, CO, USA). These instru-
ments could also be used from the ground as classical 
hypsometers, or directly from the base of the tree, by 
aiming at the highest branch and taking repeated mea-

surements. Whenever this approach is implemented, it 
should be preceded by a training session when opera-
tors can crosscheck their measurements. 
Because the proposed models are applicable to 

already acquired datasets, we foresee that they will be 
broadly applicable to tree-dominated vegetation types 
in the tropics. For the UN Framework Convention on 
Climate Change to implement a Reduced Emissions 
from Deforestation and Degradation (REDD+) scheme, 
more accurate and precise country-based carbon inven-
tories are needed (Pelletier et al., 2011). This method 
should also be complemented with belowground bio-
mass estimation methods (Mokany et al., 2006; Niiyama, 
et al., 2010). Our allometric equations typically achieve 
90% accuracy in AGB stock estimation at a 0.25 ha scale 
in a moist tropical forest, and the bias is on the order of 
10%, on average. The recently published global cover 
maps for AGB stocks (Saatchi et al., 2011), and for 
changes in AGB stocks (Harris et al., 2012) could be then 
updated based on this new methodology. Specifically, 
we predict that the Harris et al. (2012) map may be modi-

fied in drier vegetation types, which harbor some of the 
highest carbon emission rates, such as the Brazilian arc 
of deforestation or the Indochinese peninsula. We hope 
that the present study will help advance the implemen-

tation of sound practices to devise a global mechanism 
to fund climate change mitigation activities. 
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Additional Supporting Information may be found in the online version of this article: 

Data S1. Figures. 
Figure S1. Distribution of the 58 study sites in environmental space of altitude, mean annual temperature, mean annual evapotrans-
piration (ET, mm yr 1), mean annual rainfall, and temperature seasonality (TS). The gray shades in the background represent the 
range of observed variation in currently forested areas in the tropical belt. Red dots indicate Latin American sites, green African 
sites, and blue Southeast Asian and Australian sites. 
Figure S2. Among-site relationship of the individual coefficient of variation to bioclimatic variables (TS: temperature seasonality; 
CWD: climatic water deficit) across study sites, for Model 4. Each point represents the individual coefficient of variation CV(j) of a  
study site j, as inferred from Model 4. Point color and size are as in Fig. 3. 
Figure S3. Among-site relationship of the site-level bias with bioclimatic variables (TS: temperature seasonality; CWD: climatic 
water deficit) for Model 4. Each point represents the Bias(j) for site j as inferred from Model 4. Point color and size are as in Fig. 3. 
Figure S4. Among-site relationship of the form factor (ratio AGB /qD2H with bioclimatic variables (TS: temperature seasonality; 
CWD: climatic water deficit). Each point represents the mean form factor of a study site (equivalent to the fitted parameter of Model 
5). Correlation tests were performed on each dataset. In panel (a) P = 0.09 (Bartlett test); in panels (b) to (d), P < 10 3 , P = 0.08, 
P < 10 3 (Spearman correlation). Point color and size are as in Fig. 3. 
Figure S5. Forward selection for bioclimatic variables in Eqn (3). The first selected variable is TS (temperature seasonality), and 
including it results in a decline of the residual standard error (r’, noted RSE in the ordinate axis) from 0.430 to 0.292. The second 
selected variable is CWD (climatic water deficit), and including it results in a decline of the RSE from 0.292 to 0.272. The third 
selected variable is PS (precipitation seasonality), and including it results in a further decline of the RSE from 0.272 to 0.243. Addi-
tional environmental variables induced comparatively very little further decline in RSE (a gain of 0.022). 
Figure S6. Comparison between the pantropical allometric AGB Model 7 and a model in which Feldpausch et al. (2012) regional 
diameter–height equations were used. (a) Individual coefficient of variation at each site for both types of allometries. (b) Bias at each 
site for both types of allometries. Point color and size are as in Fig. 3. The outlying sites are labeled. 
Data S2. Description of the study sites. 
Table S1. Study sites and their characteristics. 
Data S3. Details about the database construction. 
Table S2. Description of the variables included in the dataset (n = 4004). 
Data S4. Illustration of the goodness of fit at each of the 58 study sites. The full dataset is plotted in the background (black). The 
foreground points and regression line represent the best-fit regression for local datasets. 
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